A Retina-like Image Representation of Primal Sketch Features Extracted using a Neural Network Approach
نویسندگان
چکیده
This paper presents a log-polar image representation composed of low-level features extracted using a connectionist approach. The low level features (edges, bars, blobs and ends) are based on Marr's primal sketch hypothesis for the human visual system 3] and are used as the entry point of an iconic vision system 1]. This unusual image representation has been created using a neural network that learns examples of the features in a window of receptive elds of the image representation.
منابع مشابه
Learning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملPrimal-Sketch Feature Extraction from a Log-Polar Images
We present a novel approach 1 for extracting primal sketch features (edges, bars, blobs and ends) from a log-polar image. Symmetry operators and a PCA pre-processing module precede a set of neural networks that learn the feature’s class and contrast. Experiments show the process accurately extracts the desired feature-based image description.
متن کاملLearning and Extracting Primal-Sketch Features in a Log-Polar Image Representation
This paper presents a novel and more successful learning based approach to extracting low level features in a retina-like (log-polar) image representation. The low level features (edges, bars, blobs and ends) are based on Marr’s primal sketch hypothesis for the human visual system [10]. The feature extraction process used a neural network that learns examples of the features in a window of rece...
متن کاملPrimal sketch feature extraction from a log-polar image
We present a novel approach 1 for extracting primal sketch features (edges, bars, blobs and ends) from a log-polar image. Symmetry operators and a PCA pre-processing module precede a set of neural networks that learn the feature’s class and contrast. Experiments show the process accurately extracts the desired feature-based image description.
متن کاملEffective Feature Selection for Pre-Cancerous Cervix Lesions Using Artificial Neural Networks
Since most common form of cervical cancer starts with pre-cancerous changes, a flawless detection of these changes becomes an important issue to prevent and treat the cervix cancer. There are 2 ways to stop this disease from developing. One way is to find and treat pre-cancers before they become true cancers, and the other is to prevent the pre-cancers in the first place. The presented approach...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998